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Abstract. The Cartan structure of the dynamical superalgebra of the I-J model of strongly 
correlated electrons is found. This is used to define and explicitly construct the coherent 
states for this algebra and calculate the invariant measure for the completeness relation 
for the coherent states. 

1. Introduction 

Supersymmetry (Wess and Bagger 1983, West 1986) has been on the agenda of particle 
physics for some years now. In condensed matter physics it has made an appearance 
(Sourlas 1985) from time to time. In this paper we will discuss a potentially very 
significant appearance, this time of a dynamical superalgebra, in condensed matter 
physics, and its mathematical description. The recent appearance is in one of the most 
active areas for many years: the study of metal-insulator transitions (Mott 1974). The 
interest has been invigorated by the relevance of these transitions to high temperature 
cuprate superconductors (Anderson 1988). Although much effort has been expended 
in understanding metal-insulator transitions over the last 30 years there is not much 
rigorously known concerning these systems. Electron correlation effects are at the heart 
of the study and Hubbard (1965) made an important contribution by encapsulating 
the inherent competition between localized and band-like behaviour in his celebrated 
Hamiltonian, HHuhhard given by 

(1) HHubhard= 1 tetvc," + U 1 ntons,-r. 
( V )  c. 8 
c7 

Here i and j denote lattice sites which are nearest neighbours, f is a hopping matrix, 
U measures the correlation 

energy. For U = O  we have band-like behaviour while for f = 0 we have the atomic 
limit. An important characteristic of the cuprate superconducting materials is the 
presence of antiferromagnetism at half-filling. Consequently, effective Hamiltonians 
which explicitly have spin-spin interactions are particularly useful. From the Hubbard 
model (and other more general models which contain degrees of freedom for both 
oxygen and copper orbitals), the following effective Hamiltonian H*., can be deduced 
(see e.g. Pike et al 1991): 

creates an electron at site i with spin U and n,, = 
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The Heisenberg spin-spin interaction thus appears explicitly. An important feature is 
the operator P which is the projector onto states with no double occupation at a site. 
Both the Hubbard and 1-J models (except in I D )  have defied solution. Even in the 
absence of the J-term the operator P Z ~ C ; ~ C , P  gives rise in general to a spectrum 
which is not band-like. The basic operators, in some sense, are no longer E ,  but c,P. 
Such operators do not have the canonical commutation relations of fermionic operators. 
Since there are no reliable methods for computations for fermions with such constraints, 
it is important to develop alternative mathematical representations for such operators. 
We actually meet similar problems when dealing with spin operators in the Heisenberg 
model. Spin operators, of course, do  not have canonical commutation relations either. 
An interesting approach to spin systems which throws light on the relation between 
spin and statistics of elementary excitations involves a coherent state representation 
(Klauder and Skagerstam 1985) of partition functions (Fradkin and Stone 1988). 

As a preliminary to the study of the corresponding physics of coherent states for 
H,., we will give in this paper a detailed discussion of the mathematics of coherent 
states appropriate for Hz-J .  In fact the coherent states are associated with the dynamical 
algebra of the Hamiltonian. For H,-, it has been noticed only quite recently (Wiegmann 
1988) that this algebra is actually a finite dimensional superalgebra (Cornwell 1989). 
The dynamicai superalgebra can in fact be the invariance algebra of H,.J for a certain 
choice of parameters in H,-, (Sarkar 1990). We will discuss this superalgebra in some 
detail and construct its highest weight coherent states which will be called supercoherent 
states. Dynamical superalgebras within the context of strongly correlated electron 
systems have also been discussed by Montorsi et al (1989a, b, c). We will find that it 
is possible to follow to a large extent the steps used for the purely spin problem. 

2. The t J  superalgebra 

In order to discuss supersymmetry and superalgebra it is very helpful to introduce 
Hubbard X-operators. For the t -J  model they are defined as follows: 

XPP = I.i)(Pil (3) 

1%) E {IO), It), 13.)) 
where 

10) is the state at site i with no electrons, It) is the state with one up spin and 14) the 
state with one down spin. In terms of X-operators H,., can be written without the 
appearance of the operator P. This is because the X have explicitly incorporated the 
constraint of no double occupation. In fact 

The form of the t-term is self-evident on using the definition of the X-operators. The 
J-term can be understood from noting that 

J 
J ( S , .  8-1) --(U,. U, - 1) 

- 4  

J 
=; (+(Ui. U, + 1) - 1) 

L 
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(where U denotes the three Pauli matrices). By explicitly considering the effect on the 
direct product of two spin states it is easy to verify that 

$(U; . uj+ 1) 

permutes the spins at site i and site j .  Consequently 

f( uj . U, + 1) = x:"xp" (6) 
C.0' 

and we have derived the form of the J-term in ( 5 ) .  The other term in (4) can also be 
expressed in terms of X-operators (Sarkar 1991). The dynamical algebra is the algebra 
of the X. Since Xp" (and XY") change the charge occupation of a site it is natural to 
regard them as fermionic. The remaining X-operators leave the charge occupation 
unchanged and so are taken to be bosonic. The algebra (Wiegmann 1988) is then 

[Xy,  xy1*= sj,(x9"6,,*xI"s,,). ( 7 )  

The anticommutator (+) occurs only when both Xpp and X:" are fermionic. Such 
algebras which involve both commutators (-) and anticommutators (+) are known as 
superalgebras. Just as for spin systems it is often convenient to represent the super- 
algebra operators in terms of bilinears of harmonic oscillators (Bars and Giinaydin 
1983). However, although this is frequently used the constraint of no double occupancy 
has to be enforced at each site explicitly and in a calculation of the partition function 
this necessitates the introduction of Lagrange multipliers, one for each site (Bickers 
1987). One of the motivations of the method of coherent states is to incorporate the 
constraint in a more intrinsic manner. None the less we will use harmonic oscillator 
representations of the algebra in orderto help unravel its Cartan structure (Georgi 1982). 

For clarity we will consider a harmonic oscillator representation which is more 
general than the t - J  algebra. For a system of n bosonic harmonic oscillators b; 
( i  = 1 , .  . . , n) and m fermionic harmonic oscillators f, ( y  = 1 , .  . . , m )  a complete set 
A of bilinears is 

A = { S Z ) , S \ i ) , Z j j ,  Ymp} (8) 

with 

S s )  =f,bj= (S<-J)' 101 (sa)  

Z:. = bib? I ( 9 6 )  

and 

yap =f*fi. (9c) 

The S-bilinears (being odd in fermionic oscillators) are of fermionic type while the 
Z .  and Y-operators are equally clearly bosonic. From the representation theory of 
ordinary Lie algebras it is known that {Z;,Ii, j = 1 ,  ..., n) generates U ( n )  and 
{Yap Im, p= 1,. . . , m }  generates U ( m ) .  It is customary to denote A by U ( n / m ) .  These 
algebras may serve as large n generalizations of the I-J algebra. We will now write 
at.^ "..l..L-^-I c,.- *La I r ...-An, i.. tnlmC "<,LO "..nr.,t"r. "f ,,I, 17) 
,115 rl""U'lI" " p c l n r u r r  1u1 UlS 1-_1 I.IY"CI .'. Lb111.a "1 ..IC Y p ' a Y L " . "  U. " \ L , L , .  
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and 

X”= 1 - Y2,.  

Analogous relations for the corresponding Hermitian conjugate operators hold. The 
condition for no double occupancy is the completeness relation 

x o o + x t t +  XLJ = 1 (11) 
and this translates for the harmonic oscillator representation into a restriction on the 
Hilbert space (Bars 1985) 

f:f,+f:f2+ b‘b = 1. (12) 

(This equation should not be regarded as an operator identity.) 
We can calculate the commutator or anticommutator of the X-operators using (9), 

(IO) and (12) and it is easy to verify that we obtain the algebra of (7). 
It is possible to consider different harmonic oscillator representations of the t-J 

algebra but the details of the representation are not of primary interest. We only use 
this representation because it serves to guide us in rewriting the 1-J algebra as close 
as possible to a Cartan form. The Cartan form is necessary for the construction of 
simple coherent states. When a standard Lie algebra G is written in Cartan form the 
generators are divided into two sets. One is a maximally commuting set { H i ]  and the 
other a set of ‘lowering’ or ‘raising’ operators { E a }  where a is a real ‘root’ vector 
(Georgi 1982). The defining commutators for a Lie algebra in the standard Cartan 
form are 

[H,, H,] = 0 (13a) 

[ H , ,  E , ]  = a& (136) 

[E., E-.] = a j H ,  ( 1 3 ~ )  

and 

[E., E o ] =  N m , o E m + o  i f a + f ? # O a n d a + p i s a r o o t  

= O  otherwise. (13d) 

A state 1 )  is said to have a (vector) weight A if 

H,I ) = A;I ). (14) 

In the vector space containing roots, a root (I is labelled positive if it is above (some 
fixed) hyperplane which does not contain any root. A state lh) such that 

E-lh) = 0 (1s) 

for all positive roots (I, is said to have highest weight. We now have all the supplementary 
concepts necessary to define coherent states for usual Lie groups. A coherent state 19) 
is basically defined by 

lg)= glh) (16) 
where g E G‘, the complexification of the Lie group. 

A highest weight state does not strictly have to be used. However, its use leads to 
simplifications because a group element can be decomposed into a product of three 
terms consisting of (i) an exponential of a linear combination of lowering operators, 
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(ii) an exponential of a linear Combination of operators in the Cartan subalgebra and 
(iii) an exponential of a linear combination of raising operators (Perelomov 1986). 
When operating on a highest weight state the last of these exponentials is equivalent 
to a unit operator, and is the rationale for using highest weight states. In quantum 
mechanics, states which differ by a phase are physically equivalent. Consequently, an 
equivalence class of coherent states may be considered, elements in the class differing 
merely by a phase. The g occurring in (16) should then he regarded as an element of 
G / H  where H is the isotropy group of Ih). 

In the representation of the partition function using Trotter's formula (Klauder 
and Skagerstam 1985), the resolution of the identity is the crucial relation that we 
need. In terms of D@(g) ,  the group invariant measure, it reads 

IDt&)lg) (g l=  1. (17) 

If we were to parametrize the coherent states with GE/ H then the appropriate measure 
would be induced on G C / H  by D p ( g ) .  It is important to note that Ig)(gl is independent 
of elements of H, and in the superalgebra case it will actually he more convenient to 
use (17) with g E G'. 

The remainder of the paper will concentrate on the appropriate generalization of 
D p ( g )  necessary for the r-J algebra. An explicit construction of the measure will be 
given. 

3. The t-J supergroup 

Much of the understanding of the structure of superalsebras and supergroups has been 
pioneered by Berezin (1987) and Kac (1977). The geometric aspect, which is our 
primary interest, is often presented in a complicated and formal way which makes it 
harder to use in an application to physics. Hence we will give a fairly self-contained 
discussion which derives relations necessary for the t -J  algebra without relying on 
general theorems. 

In order to mimic for the t-J algebra the Cartan structure, familiar from the theory 
of Lie algebras, we will rewrite it in the form 

[&, j ; ]  = ajjLi + (1 - S, ) (U ,e^+  " * j )  (180) 

[ i;, 4.1 = 0 (186) 

[Li, zj] = agij ( 1 8 ~ )  

[hi ,  A I =  -aJi.& (18d) 

and 
^ A  

[a,  b] denotes [a, b], if both a and b are fermionic operators and [a,  b ] _  otherwise. 
In (18) is bosonic. e ;̂ and 1 are either both fermionic or both bosonic. The set of 
integers i for fermionic e?j and f, will be denoted by E (The indices i and j here should 
not he confused with lattice points, We have used lower-case notation for the elements 
of the superalgebra in order to distinguish this discusgon from that for Lie algebras.) 
Clearly the role of the Cartan subalgebra is played by { h;} .  After a little experimentation 
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we find the correspondence 

Q CI sb" i c F  

j. CI S;? i c F  
h*;- b+b - f: fa 
h** b+b (19) 

OCIJf :  

f-hf T . 
(The? operators are of course quite distinct from the f operators and in the expression 
for h*# there is no summation convention for a being used.) As an example of the 
calculation of a structure constant of the algebra we note that 

[&#, q C I [ h , ,  $+'I 
= ( 1  + S.,)Sb+' (20) 

and so 

u y c )  1 t 6@. (21) 
If we base the highest weight state on the ladder operators & and 2 in the Hilbert 
space constrained by (12), then it is easy to verify that the highest weight state is IO). 
On the other hand if the root space hypersurface is chosen such that and are the 
raising operators, then the highest weight state is It). 

In order to construct coherent states we need to construct a group element corres- 
ponding to a superalgebra. We recall that standard Lie group elements connected to 
the identity are obtained by exponentiating Lie algebra elements. There is thus a 
one-io-one correspondence beiween such eiemenis ofihe group and poinis in R' where 
I is the order of the group. An analogous procedure for supergroups requires a 
Grassmann generalization of R' (Cornwell 1989). A relevant generalization of R is 
the algebra RB, where M is the number of Grassmann generators 6.  RBM consists 
of elements which are sums of products of Grassmann generators with coefficients in 
R multiplying the products. If a term does not involve any Grassmann elements it 

lllr b u " a g G u L *  bulrsr>rrrlg V L  cilcLLl=illls WLLlUlL a,= >UI,,S U, 

even products of Grassmann generators is denoted by RB,, and the remaining elements 
by RB,, , Anatural generalizationof R'is R B Z  which is defined as (RB,,)'@(RB,,)". 
In a similar way the complex algebra CBG may be defined. Instead of defining a 
supergroup in terms of the super Lie algebra we will do the inverse procedure. First 
we need the concept of a supermatrix (Cornwell 1989). An even ( p / q )  x ( p / q )  super- 
matrix M has the form 

--A..,.-̂  *^ o,e.......* ^C D TI... "..!-",....Le" -- ..-:-.:.... -C-L..- . . . -  ... L:̂ L --- -r 
L r Y U C C I  I" a,, CICIII~'IIL "1 1,. 

M = ( '  R S  ') 
with P a p x p matrix with elements in CB,,, Q a p x q matrix with elements in  CB,,,, , 
R a q x p  matrix with elements in CBMl  and S a q x q matrix with elements in CBM,. 
Such a set of supermatrices forms a group with respect to matrix multiplication. In 
order to introduce the associated super-lie algebra we need to have a norm 11 I/ on 
supermatrices. A suitable norm is given by 

P+'l  r+4 

j = 1  k = l  
IIMII= I: I: IIMJll 
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and this induces a distance function d in the space of matrices through 

(In (23) IIMjkl\ is evaluated in terms of a suitable norm in CB,,,.) 
Consequently M is in a neighbourhood of the identity of l p + q  if d(M,  l,,,) is 

sufficiently small. M can then be parametrized by an element ( x ' , x 2 ,  ..., x"', 
*', . . . , *") of R B T .  Such elements form a Lie supergroup which is said to have 
even dimension m and odd dimension n. lptu is labelled by the 0 element of RBZ".  
The inverse procedure to that of exponentiating a Lie algebra element to obtain a Lie 
group element gives the following generators: 

d (  M, M ' )  = IIM - M'II. (24) 

Here x i  and *', are real numbers related to x and (# through 

x J =  1 x;S; (27) 
(e) 

e"=" 

and 
* J =  1 $15, (28) 

ll') 
odd 

where p indexes a monotonically ordered set of distinct integers in the set 1 1 , .  . . , M I ,  
and l+ is a product IIl, where i is taken from a subset of the set indexed by p. If p 
is, for example, {l ,  2, M }  then 

5, = 1 1 5 2 l M  (29) 
and p is odd. 

In section 2 we showed that the t-J algebra is U(112:C). The corresponding 
supergroup element is known (Cornwell 1989) to satisfy 

M + M = I ~  
where 

P is a 1 x 1 matrix, R is a 1 x 2 matrix, Q is a 2 x 1 matrix a S is x 2 matrix. The 
symbol '-' indicates matrix transpose and # is a Grassmann adjoint operation 

if [* is even 
if s,, is odd. (32) 

s: = 5, 
= -it,. 

The # operation also requires the taking of the complex conjugate of all complex 
numbers. 

We will proceed with the construction of coherent states. For the t-J model a basis 
for the matrix representation is IO), It) and (I), the basis element (0) having bosonic 
grading and It) and 13.) fermionic grading. The elements of the isotropy group H of 
10) by inspection have the form 
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Similarly for It), a typical isotropy group element is 

a l l  0 a13 

(;;; a22 
a..). 

0 a33 

Let us identify the superalgebra generators 14)  and {KJ which are bosonic and 
fermionic respectively. We have 

(34) {Ljl =Ib'b, fif:, f d ,  f:fi, f:f2} 

{K,I={fJ', b f L , a = l , 2 ) .  (35) 

(36j 

(*,K,+x,L,)'+(*,K,+x,L,) =o. (37) 

and 

A general supergroup element g, from our discussion, has the form 
, . _. 

g=exp(qr+K,+xjiij 

where +,E CBM, and x, E CB,,. From (30) we deduce that the exponent satisfies 

Equation (37) for superalgebras is the analogue of anti-Hemiticity for Lie algebras 
and ensures unitarity. 

It will be convenient to reparametrize g in (38). We will write xi as yI+yi where 
y: is nilpotent but yj is an ordinary complex number. Now from the group properties 
we know that 

(38) 

for some #; and x:. The explicit form of +; and xi can be found from the Campbell- 
Hausdorff formuia which we will require frequentiy in our tater calcuiations. We will 
produce the formula where we first use it. At this stage we just want to point out that 
X I  is nilpotent. Indeed 

exp(+aK,+xiLi) exp( -yjLj) = exp(#:K,+xjLi) 

exp(#,.K, + x,LJ 

= exp(#,K, +yj& + Y ~ U  

" 1  
j = O J .  

= <(y ,L , ) '+R 

Since R can only be a polynomial function of #* and y: with no constant term it is 
nilpotent. 

From (39) we deduce that 

exp(#,.K,+x,L,) exp(-y,L,) = I +  R exp(-y,L,). (40) 

Since D is xi?po!en:, .? exp(-y,L,) is a!so ni!po!e":. Fo: c a ~ p a a x e s s  of .C!.tiCr! !et 

*= $;K,+x:L,. 

Now 

exp Y = 1 + f ( Y )  
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where 

Ilr2 Ilr" f ( V )  = Ilr +-+. . .+-+. , .. 
2!  n! 

For f(V) to be nilpotent it is necessary and sufficient that Ilr (i.e. $LK,+xjLj) is 
nilpotent. 

Consequently xj also has to be nilpotent. However, for the construction of coherent 
siaies ii is usefui io make a Further simpiiiication. As represeniative members ofeiemenis 
in G /  H we will take 

exp($,J,) exp(xjLi) 

where x, are complex numbers. This is permissible as we will see from applying the 
Campbell-Hausdorff (CH) formula in evaluating products of exponentials. In fact the 
CH formula is 

exp(u) exp(u) =exp(uf;R,(l fcoth fR,)u) (42) 

where R, is an operator such that 

R,u =[U, U]. (43) 
!! is easy to check !ha? 

(44) 1 rR,( 1 +coth fR,)u = U +flu, U] +&[[U, U], U] + . . . . 
Let us first consider coherent states based on IO). It is convenient to parametrize elements 
h of H as 

h = exp(xjLj) exp(aXm). (45) 

Here we have chosen the notation that Lj are generators of SU(2); xj and a are even 
elements of the Grassmann algebra. Now gh where 

g =exp($,K,+yjLJ exp(yjL,) (46) 

(with y' nilpotent and yj complex) can be written as 

gh =exp($$,+yiL,) exp(ZkLk+aXao) exp(yjlj) (47) 

where 

exp(ZkLk) = exp(yjLj,) exp(xiL) exp(-yk&). (48) 

(49) 

By using the freedom in choosing Zk and a, the CH formula implies that 

exp($*L;K,, + y ; ~ , )  exp(ZkLk +axw) = exp($:K,) 

for some $;. 
Hence a represeniative gh in a coset has the form 

exp($LK,) exp(y,Lj). 

A similar reasoning can be made for coherent states based on It). 

4. The invariant measure 

In the ConstNction of Dfi(g)  for U( 1/2; c)  we will follow a similar procedure to that 
used in the theory of ordinary Lie groups. For compactness of notation (and resultant 
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clarity) we give the main steps in our discussion for a general finite dimensional 
supergroup with m fermionic generators {K,} and n bosonic generators { L j ) .  Dp(g) 
can be expressed in terms of right-translation vectors. The basic right translations are 

(50) exp(l,K,) exp(3Lj)ykLx=y. d'"exp(C. K )  exp(x. L) 

exp(C,K,) exp(x,L;)a,K, = (I. d(2) exp(i,K,) exp(xiLi) 

and 

(51) 

d'" and d'" are vector fields and, in component form, may be written as 

and 

(From now on we will assume a summation convention on repeated indices.) In terms 
of the d'" and dI2) matrices, the invariant measure is given by the superdeterminant 
(Berezin 1987). 

We will now calculate d"), 6'", dI2' and d'". 
The definitions of J f J L  and JfJxj are the usual ones, i.e. 

er'L ~ e (<+SO.K ex.L-el.K 

-eCK(e-I-K - e(K+6K).K - 1) ex 'L  

sgv- a (eCK 
J C" 

and 

- e C K  - e x ~ L ( e - x ~ L e l x + 6 x ) ~ L -  1) 

We can use the CH formula to evaluate the relevant products of these exr 

(55) 

( 5 6 )  

itials. 
An important simplification occurs since products of Grassmann variables of order 
(M+1) or higher vanish. It is easy to show that 

6[,J,(eCK ex'L) = SC, e'"(b,K,+a,L,) ex 'L (57) 

where a, and (b, - 8,) are both nilpotent. On using 

e-"LK, ex'L= h,,K, ( 5 8 )  

and 

e - = ' L ~ j  ex.L= !ikLk (59) 

(for suitable h,, and rjk) to be calculated later (57) can be put into a form 

6C'J,(eCK e"'L) = Sg' eCK e"'L(b,h,,K,+a,r;xL*). (60) 
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Similar type of arguments can show that 

) SXj e i K  ex.L e. L 8xjJ,(eCK ex.L I* k 

where ejk is a function of x. Now (50) translates into 
y ,  d ' l ) e C K e " ' L  

=yjdj:)ecK e""(b,~hrhK,+a.,r,,Lk)+yjci::' eiK e"'Lek,L,. 

Since (50) and (62) both have to be true it is necessary that 

djl' = 0 

& ' J e  . = 8.. 
(i.e. the coefficient of K ,  has to vanish). Hence we have 

jlr kt IC' 

Similarly 

e C K  ex.L a. K = cx ,d~~ecK e"'L(b,,h, , ,K,,+a,rjkLk)$.n,d~~~ e t K  e"'LejkLk 

and so 

d'2'a ,L'Y yI,k .r. +d?je,=O 

and 

d$?b,h,,.= 8,.,.. 

Equations (64), (66) and (67) permit the calculation of all non-zero d'" and d'2'. The 
auxiliary quantities in terms of which they are expressed (such as bv,J will be calulated 
in the appendix. 

A superdeterminant A of a p /q  x p l q  supermatrix 

(: 3 
is defined to be (Cornwell 1989) 

A =  (det(A-BD-'C))(det F'). 

Since d'l' has vanished we have 
d(2' d"' det d'2) 

lJc2> d(I'1 -detd'l) 
-- 

(det denotes a standard determinant). 
From (64) and (67) it follows that 

and 

det d2)= (det b)-'(det h)-' 

det e is just the usual measure corresponding to the Lie group associated with { L j }  
and so is already familiar. In the appendix we obtain simple expressions for det b and 
det h. From (54) we now have the invariant measure, and hence the resolution of the 
identity. 
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Although we have examined the f - J  algebra in detail it is rather typical of the 
other algebras in the study of strongly correlated systems. So far the bulk of such 
studies have relied on the harmonic oscillator representations which have constraints 
that have to be imposed and so are not intrinsic. An impediment to the application of 
coherent state methods has been the lack of a discussion of explicit mathematical 
properties of coherent states for the comparatively unfamiliar f - J  type algebras. Our 
note, we hope, will fill this gap. 
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Appendix 

It is convenient to work with the following form of the bosonic operators: 

Lz = f(f :f, -f :A )  

L3 =; (f:fi -fW 
i, = ib'b 

and 

L5 = i. 

-iL,, -iL, and -iL, are the usual SU(2) generators and satisfy the algebra 

[L,, L I  = Ej*,L".  

Moreover we will choose 

K, = b'f, 

K2 = b'h 
K , = f : b  

and 

K4= fib. 
We will first calculate h,, (defined by (56 ) ) .  

e-"'LK, e r ' L  
1 

= K,, + [ - x . L ,  K,J +% [-x.L, [-x.L, K , ] ]  

1 
n! 

+...+-[- X .  L ,... [ - x . L , [ - x . L , K J ]  . . .  If ...  



Supercoherent sfatesfor the r - l  model 5787 

If we write 

[Li, K,] = M' *" K ,  (A12) 

e-""K,, e""=(e-"fpvKv (A13) 

then from (69) 

where 

N,. =x.M;,  (A141 

.. h,, = (e-"),". (A15) 
The structure function M:, is determined by (7). 

For b,, we have to calculate 
e-l-K e ( i + 6 0 . K  

and from the CH formula we can deduce that 
e - C K  elC+6i).K 

=exp(85.K+t[-C.K,  8<. K ] - & [ [ L . K ,  8<.K1,5.K1 

+&0[[[[5. K, 85. Kl, 5. K1, 5 .  K1, 5 .  K I ) .  (A161 
(The exponent has terminated at a fourth-order term since the number of fermionic 
generators is 4.) On identifying the commutators which lead to fermionic terms we find 

~<"bv,&=&[[C[5. K, 85. Kl, 5. Kl, C. KI, 5 .  K l  
- & [ [ C . K ,  8 ( ' . K ] ,  < . K ] + S < . K .  (A17) 

bii =-i%$hb2+h$:+:$1$2)+ 1 (A18a) 

(A18b) 

b13=0  (A18c) 

(A18d) b _ I  

(A18e) 

(A18f) 

(A%) 

Further detailed calculations give 

b -I 
12- I**:*, 

~ , & - & , * 2  

21 -,2$:*2 

23 - 6*& 

b -I 

b22 = -&($:$i +&$:@;+s $2) + 1 
b -1  

b2, = 0 (A18h) 

b,,=O (Alb'i) 
b --I f f 

3 2 -  6 $ 8 $ 2  

b 3 3 =  -&($:$2 +ibb:$:$i $2) + 1 ( A W )  

h.. -,+ =&,/,?sf,- I l r I r '  (A!81)  

(A181) 

ba2 = 0 (A18m) 

(Also)  

b44=-&($;$1 +&@:$:*1$2)+ 1 (Also)  

b --i t f 
41- 64 '243  

b -1 
43 - I2*:*I 
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where we have used the notation 

51 = *; 5 2 =  *; 53 = *I and i 4 = * 2 .  (A19) 

det = exp tr log (AZO) 

det h = exp tr log eCN 

Using the relation 

we have 

= exp( -tr N )  

= exp(-xiMi,). (A21) 
A straightforward calculation (on using the explicit expressions in (A18)) gives 

I t T  detb=l-~(*:JI ,+~(:*)2)-8*192*1*2 

= exp(-i(+i@l + t&2) ( M 2 )  
det e gives the measure corresponding to the bosonic Lie subgroup. e,, is calculated 
from (61) or equivalently by finding Sa in 

esa =exp( -xjLj) exp((xk + SX,)L,). (A231 
The CH formula gives 

where x2 =Z3=t x:. Hence 
3 

e. i k  = 8. I* - &E,~, - (r -cot -- 1 )(-) f o r l < j , k s 3  
i - l  

and 

eV = 6, 

e,, = 6 , .  
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